Spatial transcriptomics offers a glimpse of how microbiomes interact with their hosts.

Microbiome studies today depend heavily on DNA or RNA sequencing of microbial genetic material obtained from bulk environmental samples. These sequencing-based approaches erase all microbial spatial context information and do not capture bidirectional interactions between microbes and their host. The work of Giacomello and colleagues, and of Vickovic and colleagues, builds on recent methods for spatial transcriptomics that use RNA sequencing with arrayed reverse transcription oligo-dT primers tagged with position-specific barcodes3,4,5,6. The barcodes and complementary DNA copies of the RNA transcripts are recorded together by sequencing, which enables researchers to create a map of RNA transcript abundance as a function of location in the tissue. However, these methods are largely limited to capturing poly-A-tailed host messenger RNAs and are insensitive to microbial RNAs, which lack a poly-A-tail7.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscription info for Korean customers

We have a dedicated website for our Korean customers. Please go to natureasia.com to subscribe to this journal.

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods to explore the host-microbiome interactome.

References

  1. Saarenpää, S. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01979-2 (2023).

    Article 

    Google Scholar 

  2. Lötstedt, B., Stražar, M., Xavier, R., Regev, A. & Vickovic, S. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01988-1 (2023).

    Article 

    Google Scholar 

  3. Ståhl, P. L. et al. Science 353, 78–82 (2016).

    Article 
    PubMed 

    Google Scholar 

  4. Rodriques, S. G. et al. Science 363, 1463–1467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  5. Galeano Niño, J. L. et al. Nature 611, 810–817 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  6. Lyu, L. et al. Genome Res. 33, 401–411 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  7. McKellar, D. W. et al. Nat. Biotechnol. 41, 513–520 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  8. Chen, A. et al. Cell 185, 1777–1792.e21 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  10. Shi, H. et al. Nature 588, 676–681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  11. Dar, D., Dar, N., Cai, L. & Newman, D. K. Science 373, eabi4882 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  12. Shalon, D. et al. Nature 617, 581–591 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA

    Ioannis Ntekas & Iwijn De Vlaminck

Corresponding author

Correspondence to
Iwijn De Vlaminck.

Ethics declarations

Competing interests

I.D.V. is a co-founder of Kanvas Biosciences. I.N. declares no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntekas, I., De Vlaminck, I. Spatial methods for microbiome–host interactions.
Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01996-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-01996-1

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *